Relation between the two-body entropy and the relaxation time in supercooled water.

نویسندگان

  • P Gallo
  • M Rovere
چکیده

The two-body excess entropy of supercooled water is calculated from the radial distribution functions obtained from computer simulation of the TIP4P model for different densities upon supercooling. This quantity is considered in connection with the relaxation time of the self intermediate scattering function. The relaxation time shows a mode coupling theory (MCT) behavior in the region of mild supercooling and a strong behavior in the deep supercooled region. We find here that the two-body entropy is connected to the relaxation time and shows a logarithmic behavior with an apparent asymptotic divergence at the mode coupling crossover temperature. There is also evidence of a change in behavior of the two-body entropy upon crossing from the fragile (hopping-free) state to the strong (hopping-dominated) state of supercooled water, and the relation that connects the two-body entropy and the relxation time in the MCT region no longer holds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying time scales for violation/preservation of Stokes-Einstein relation in supercooled water

The violation of the Stokes-Einstein (SE) relation D ~ (η/T)-1 between the shear viscosity η and the translational diffusion constant D at temperature T is of great importance for characterizing anomalous dynamics of supercooled water. Determining which time scales play key roles in the SE violation remains elusive without the measurement of η. We provide comprehensive simulation results of the...

متن کامل

Slow Dynamics and Structure of Supercooled Water in Confinement

We review our simulation results on properties of supercooled confined water. We consider two situations: water confined in a hydrophilic pore that mimics an MCM-41 environment and water at interface with a protein. The behavior upon cooling of the α relaxation of water in both environments is well interpreted in terms of the Mode Coupling Theory of glassy dynamics. Moreover, we find a crossove...

متن کامل

Relation of water anomalies to the excess entropy.

Using the five-site transferable intermolecular potential (TIP5P) we perform molecular dynamics simulations to investigate the relationship between the excess entropy and anomalies of water. We find that the two-body excess entropy is an ideal quantity to predict the regions of structural, dynamic, and thermodynamic anomalies of water in its pressure-temperature and density-temperature phase di...

متن کامل

Recent results on the connection between thermodynamics and dynamics in supercooled water.

We review recent results on the connection between thermodynamics and dynamics in a model for water. We verify the Adam-Gibbs relation between entropy and dynamic properties using computer simulations, which allow direct access to the relevant properties. We combine experimental measurements of entropy with the Adam-Gibbs hypothesis to predict dynamic properties in deeply supercooled states, wh...

متن کامل

Glassy Relaxation and Breakdown of the Stokes-Einstein Rela- tion in the Two Dimensional Lattice Coulomb Gas of Fractional Charges

– We present Monte Carlo simulation results on the equilibrium relaxation of the two dimensional lattice Coulomb gas with fractional charges, which exhibits a close analogy to the primary relaxation of fragile supercooled liquids. Single particle and collective relaxation dynamics show that the Stokes-Einstein relation is violated at low temperatures, which can be characterized by a fractional ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 91 1  شماره 

صفحات  -

تاریخ انتشار 2015